Dichlorotetrakis(pyridine)nickel(II)

By Robert E. Bachman and Kenton H. Whitmire*
Department of Chemistry, Rice University, PO Box 1892, Houston, Texas 77251, USA
and Subrata Mandal and Parimal K. Bharadwaj
Department of Chemistry, Indian Institute of Technology Kanpur, PO IIT, Kanpur - 208016, India

(Received 2 December 1991; accepted 10 February 1992)

Abstract

NiCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right], M_{r}=446.01\), tetragonal, I4 1 /acd,$\quad a=15.783$ (3),$\quad c=16.965$ (8) $\AA, \quad V=$ 4226 (2) $\AA^{3}, \quad Z=8, \quad D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha$ radiation (graphite-crystal monochromator), $\lambda=$ $0.71069 \AA, \quad \mu=1.19 \mathrm{~mm}^{-1}, \quad F(000)=1840, \quad T=$ 193 K , final conventional $R=0.039$ for 741 unique observed $[I>3 \sigma(I)]$ reflections and 83 variables. The Ni has an octahedral coordination with the Cl ligands in a trans relationship. The $\mathrm{Ni}-\mathrm{Cl}$ distance is 2.433 (1) \AA and the $\mathrm{Ni}-\mathrm{N}$ distance is 2.121 (3) \AA. The average $\mathrm{N}-\mathrm{Ni}-\mathrm{Cl}$ angle is $90.0(9)^{\circ}$.

Experimental. A blue-green crystal $(0.50 \times 0.50 \times$ 0.50 mm), obtained from the reaction of the Ni salt with pyridine, was mounted on glass fiber and used for data collection on a Rigaku AFC-5S singlecrystal diffractometer with graphite-crystal-monochromated Mo $K \alpha$ radiation. Unit-cell dimensions were determined from angular settings of 25 reflections with 2θ between 37 and 42°. The space group was determined to be $I 4_{1} /$ acd (No. 142) from the systematic absences. 3249 reflections were measured $(-10<h<21, \quad 0<k<21, \quad 0<l<22 ; \quad 4.0<2 \theta<$ 55.0°) with 741 unique reflections observed [$I>$ $3 \sigma(I)] ; R_{\text {int }}=0.024$. The $\omega-2 \theta$-scan technique was employed with a $16.0^{\circ} \mathrm{min}^{-1}$ scan rate. Weak reflections $[I<10 \sigma(I)]$ were rescaned (maximum two rescans) and the counts accumulated to assure good counting statistics. Stationary background counts were recorded on each side of the reflection. Crystal and diffractometer stability was checked by monitoring three standard reflections every 150 reflections. Only random deviations were observed over the course of data collection. No decay correction was applied. An empirical absorption correction, based on ψ scans, was applied with correction factors ranging from 0.96 to 1.00 . The data were also corrected for Lorentz and polarization effects. The structure was solved by direct methods employing the program MITHRIL (Gilmore, 1984) and Fourier

[^0]synthesis, both of which are part of the TEXSAN2.0 program package (Molecular Structure Corporation, 1989). Least-squares refinement followed by an additional Fourier synthesis enabled the location of all the H atoms.
During the final stages of refinement the positional and anisotropic displacement parameters of all non-H atoms were refined. All H atoms were refined isotropically. The final conventional agreement factors were $R=0.039, w R=0.049$ and $S=1.91$ for the 741 observed reflections and 83 variables. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ where $w=1 / \sigma^{2}\left(F_{o}\right)$ with $\sigma\left(F_{o}\right)$ from counting statistics. The maximum shift/e.s.d. in the last full-matrix least-squares cycle was less than 0.0002 . The final difference Fourier map showed no peaks higher than $1.21 \mathrm{e} \AA^{-3}$ or deeper than -0.21 e \AA^{-3}. All programs used in the structure solution and refinement are contained in the TEXSAN2.0 package (Molecular Structure Corporation, 1989). The plot was made using ORTEPII (Johnson, 1976). The atomic scattering factors included with the software package are from International Tables for X-ray Crystallography (1974, Vol. IV). The final positional and equivalent isotropic displacement parameters are given in Table $1 . \dagger$ Table 2 contains the molecular geometry data. Fig. 1 illustrates the metal coordination and the numbering scheme.

Related literature. The $\mathrm{Ni}-\mathrm{O}$ bond length in tetra-kis(3,5-dimethylpyridine)nickel(II) perchlorate is reported as 2.187 (4) \AA and it shows paramagnetism (Madaule-Aubry \& Brown, 1968). Conversely, the $\mathrm{N}-\mathrm{O}$ distance in the 3,4-dimethyl derivative is

[^1]© 1992 International Union of Crystallography

Table 1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{2}\right)$, with e.s.d.'s in parentheses

	$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .$			
	x	y	z	$B_{\text {eq }}$
$\mathrm{Ni}(1)$	1.0000	$\frac{1}{4}$	$\frac{1}{8}$	1.99 (2)
$\mathrm{Cl}(1)$	0.39099 (6)	0.6410	$\frac{1}{8}$	1.08 (3)
$\mathrm{N}(1)$	1.0682 (2)	0.3161 (2)	0.0366 (2)	2.3 (1)
C(1)	1.1066 (3)	0.2758 (3)	-0.0223 (2)	3.1 (2)
C(2)	1.1502 (3)	0.3180 (4)	-0.0804 (3)	4.1 (3)
C(3)	1.1565 (3)	0.4036 (4)	-0.0780 (3)	4.2 (3)
C(4)	1.1179 (3)	0.4460 (3)	-0.0180 (3)	3.4 (2)
C(5)	1.0747 (3)	0.4009 (3)	0.0377 (2)	2.7 (2)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses

$\mathrm{Ni}(1)-\mathrm{Cl}(1) \quad 2$.	2.433 (1)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.373 (6)
$\mathrm{Ni}(1)-\mathrm{N}(1)$	2.121 (3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.356 (7)
$\mathrm{N}(1)-\mathrm{C}(1) \quad 1.3$	1.330 (5)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.362 (6)
$\mathrm{N}(1)-\mathrm{C}(5) \quad 1$.	1.342 (5)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.366 (5)
$\mathrm{Cl}(1)-\mathrm{Ni}(1)-\mathrm{Cl}\left(1^{*}\right)$	*) 180.00	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	116.9 (3)
$\mathrm{Cl}(1)-\mathrm{Ni}(1)-\mathrm{N}(1)$	90.63 (9)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	122.3 (4)
$\mathrm{Cl}(1)-\mathrm{Ni}(1)-\mathrm{N}\left(1^{*}\right)$) 89.37 (9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.9 (5)
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}\left(1^{*}\right)$	90.0 (2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.6 (4)
$\mathrm{Ni}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	121.8 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.0 (4)
$\mathrm{Ni}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	121.3 (3)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	123.2 (4)
* Indicates symmetry related atom.			

3.343 (7) \AA, well beyond the proximity needed for chemical bonding, and it shows diamagnetic behavior. The $\mathrm{Ni}-\mathrm{Cl}$ distance, 2.433 (1) \AA, in the title compound indicates that a chemical bond does exist and therefore the compound should be paramagnetic. The structural characterization of this compound, as well as the related Co compound, has been previously reported (Porai-Koshits, 1954). The present study determines all the relevant parameters to a higher degree of accuracy. A partial study has also been carried out on the related Fe system showing that it is isostructural (Forster \& Dahm, 1972).

Fig. 1. ORTEPII (Johnson, 1976) representation showing the coordination of the central Ni atom and the atomic numbering scheme.

KHW thanks the Robert A. Welch Foundation for financial support of this research and the National Science Foundation for financial assistance in the purchase of the diffractometer.

References

Forster, D. \& Dahm, D. J. (1972). Inorg. Chem. 11, 918.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Madaule-Aubry, F. \& Brown, G. M. (1968). Acta Cryst. B24, 745-753, 753-760.
Molecular Structure Corporation (1989). TEXSAN. Single-Crystal Structure Analysis Software. Version 5.0. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Porai-Koshits, M. A. (1954). Tr. Inst. Kristallogr. Akad. Nauk SSSR, 10, 117-119.

Acta Cryst. (1992). C48, 1837-1839

Structure of the $\boldsymbol{\mu}$-Azido-dichloro($\boldsymbol{\eta}^{\mathbf{5}}$-methylcyclopentadienyl)titanium(IV) Dimer

By Kristin Kirschbaum and Dean M. Giolando
Department of Chemistry, University of Toledo, Toledo, OH 43606, USA

(Received 15 October 1991; accepted 20 February 1992)

Abstract

Di- μ-azido- N : N-bis[dichloro(η^{5}-methylcyclopentadienyl)titanium(IV)], $\left[\mathrm{TiCl}_{2}\left(\mathrm{~N}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)\right]_{2}$, $M_{r}=479.90$, monoclinic, $P 2_{1} / c, a=7.101$ (2), $b=$

$13.920(3), \quad c=19.050(4) \AA, \quad \beta=98.47(2)^{\circ}, \quad V=$
$1863(5) \AA^{3}, \quad Z=4, D_{x}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$
$0.71073 \AA, \quad \mu=14.4 \mathrm{~cm}^{-1}, \quad F(000)=960, \quad T=$ 1863 (5) $\AA^{3}, Z=4, D_{x}=1.71 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \quad \mu=14.4 \mathrm{~cm}^{-1}, \quad F(000)=960, \quad T=$

[^0]: * Author to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, intra- and intermolecular bond distances, intramolecular bond angles and torsion angles, least-squares planes and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55161 (16 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH0615]

